Fault-Tolerant Metric Dimension of Circulant Graphs

نویسندگان

چکیده

Let G be a connected graph with vertex set V(G) and d(u,v) the distance between vertices u v. A of S={s1,s2,…,sk}?V(G) is called resolving for if, any two distinct u,v?V(G), there si?S such that d(u,si)?d(v,si). S fault-tolerant if S\{x} also set, each x in S, metric dimension G, denoted by ??(G), minimum cardinality set. The paper Basak et al. on circulant graphs Cn(1,2,3) has determined exact value ??(Cn(1,2,3)). In this article, we extend results to Cn(1,2,3,4) obtain ??(Cn(1,2,3,4)) all n?22.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Metric Dimension of Circulant Graphs and Their Cartesian Products

Let G = (V,E) be a connected graph (or hypergraph) and let d(x, y) denote the distance between vertices x, y ∈ V (G). A subset W ⊆ V (G) is called a resolving set for G if for every pair of distinct vertices x, y ∈ V (G), there is w ∈ W such that d(x,w) 6= d(y, w). The minimum cardinality of a resolving set for G is called the metric dimension of G, denoted by β(G). The circulant graph Cn(1, 2,...

متن کامل

The metric dimension of circulant graphs and Cayley hypergraphs

Let G = (V,E) be a connected graph (or hypergraph) and let d(x, y) denote the distance between vertices x, y ∈ V (G). A subset W ⊆ V (G) is called a resolving set for G if for every pair of distinct vertices x, y ∈ V (G), there is w ∈ W such that d(x,w) 6= d(y, w). The minimum cardinality of a resolving set for G is called the metric dimension of G, denoted by β(G). In this paper we determine t...

متن کامل

The metric dimension and girth of graphs

A set $Wsubseteq V(G)$ is called a resolving set for $G$, if for each two distinct vertices $u,vin V(G)$ there exists $win W$ such that $d(u,w)neq d(v,w)$, where $d(x,y)$ is the distance between the vertices $x$ and $y$. The minimum cardinality of a resolving set for $G$ is called the metric dimension of $G$, and denoted by $dim(G)$. In this paper, it is proved that in a connected graph $...

متن کامل

On Minimum Metric Dimension of Circulant Networks

Let M = } ,..., , { 2 1 n v v v be an ordered set of vertices in a graph G. Then )) , ( ),..., , ( ), , ( ( 2 1 n v u d v u d v u d is called the M-coordinates of a vertex u of G. The set M is called a metric basis if the vertices of G have distinct M-coordinates. A minimum metric basis is a set M with minimum cardinality. The cardinality of a minimum metric basis of G is called minimum metric ...

متن کامل

the metric dimension and girth of graphs

a set $wsubseteq v(g)$ is called a resolving set for $g$, if for each two distinct vertices $u,vin v(g)$ there exists $win w$ such that $d(u,w)neq d(v,w)$, where $d(x,y)$ is the distance between the vertices $x$ and $y$. the minimum cardinality of a resolving set for $g$ is called the metric dimension of $g$, and denoted by $dim(g)$. in this paper, it is proved that in a connected graph $...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2022

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math10010124